
Contributors

Jithin Jagannath, Nicholas Polosky, Anu Jagannath ANDRO Ad-

vanced Applied Technology, ANDRO Computational Solutions, LLC, Rome,

New York, U.S.A

Francesco Restuccia, Tommaso Melodia Wireless Networks and Em-

bedded Systems Laboratory, Northeastern University, Boston, MA, U.S.A

5

Acronyms

AM amplitude modulation

AMC automatic modulation classification

ANN artificial neural network

AXI Advanced eXtensible Interface

BP back-propagation

BPSK binary phase shift keying

CART classification and regression trees

CPFSK continuos phase frequency shift keying

CPU central processing unit

CDMA code division multiple access

CMAC cerebellar model articulation controller

CNN convolutional neural networks

DCNN deep convolutional neural network

DMA direct memory access

DRL deep reinforcement learning

DSA dynamic spectrum access

7

DSB double-sideband modulation

DL deep learning

DNN deep neural network

DP dynamic programming

FFT fast Fourier transform

FIFO first-in first-out

FPGA field-programmable gate array

FSK frequency shift keying

GFSK Gaussian frequency shift keying

GMSK Gaussian minimum shift keying

HDL hardware description language

HLS high-level synthesis

II initiation interval

IoT Internet of things

I/Q in-phase/quadrature

LO local oscillator

LSTM long short term memory

ML machine learning

MLP multi-layer perceptron

8

MMSE minimum mean square error

MST multi-stage training

M-QAM M-ary quadrature amplitude modulation

NLP natural language processing

OFDM orthogonal frequency-division multiplexing

PAM pulse-amplitude modulation

PCA Principal component analysis

PL programmable logic

PS processing system

PSD power spectral density

PSK phase shift keying

QAM quadrature amplitude modulation

QoS quality of service

QPSK quadrature phase shift keying

RAM random access memory

RBF radial basis function

RBFNN radial basis function neural network

RF radio frequency

RN residual network

9

RNN recurrent neural network

SGD stochastic gradient descent

SoC System on Chip

SNR signal-to-noise-ratio

SSB single-sideband modulation

SVM support vector machine

UF unrolling factor

WBFM wideband Frequency Modulation

WIC wireless interference classification

1

2

Chapter 13

Neural Networks for Signal

Intelligence: Theory and

Practice

The significance of robust wireless communication in both commercial and

military applications is indisputable. The commercial sector struggles to bal-

ance the limited spectral resources with the ever growing bandwidth demand

which includes multimedia support with specific quality of service (QoS) re-

quirements. In tactical scenarios, it has always been challenging to operate in

a hostile congested and contested environment. Both these scenarios can ben-

efit from efficient spectrum sensing and signal classification capabilities. While

this problem has been studied for decades, the recent rejuvenation of machine

learning has made a significant footprint in this domain. Accordingly, this

chapter aims to provide readers with a comprehensive account of how machine

learning techniques, specifically artificial neural networks have been applied

to solve some of the key problems related to gathering signal intelligence. To

accomplish this, we begin by presenting an overview of artificial neural net-

works. Next, we discuss the influence of machine learning on the physical layer

1

in the context of signal intelligence. Thereafter, we discuss directions taken by

the community towards hardware implementation. Finally, we identify the key

hurdles associated with the applications of machine learning at the physical

layer.

13.1. Introduction

According to the latest Ericsson’s mobility report, there are now 5.2 billion

mobile broadband subscriptions worldwide, generating more than 130 exabytes

per month of wireless traffic [Ericsson Incorporated, 2018]. Moreover, it is ex-

pected that by 2020, over 50 billion devices will be absorbed into the Inter-

net, generating a global network of “things” of dimensions never seen before

[Cisco Systems, 2017]. Given that only a few radio frequency (RF) spectrum

bands are available to wireless carriers [Federal Communications Commis-

sion [2016]], technologies such as RF spectrum sharing through beamform-

ing [Shokri-Ghadikolaei et al., 2016, Vázquez et al., 2018, Lv et al., 2018],

dynamic spectrum access (DSA) [Jin et al., 2018, Chiwewe and Hancke, 2017,

Jagannath et al., 2018a, Federated Wireless, 2018, Agarwal and De, 2016] and

anti-jamming technologies [Zhang et al., 2017, Huang et al., 2017, Chang et al.,

2017] will become essential in the near future.

Software defined radios were introduced as a solution to the limitation as-

sociated with a rigid radio hardware design that prevents reconfigurability and

operational flexibility. Equipping radios with the ability to learn and observe

the operational scenarios to make cognitive decisions can improve spectrum

sharing and spectral situation awareness. Spectrum sharing will allow radios

to sense and utilize unused/underutilized spectrum to avoid spectrum conges-

2

tion caused by unintentional/intentional interferences. Further, signal sensing

and classification can bolster the spectral knowledge of the radios to reinforce

and foster situational awareness. Commercial and tactical military operators

can exploit this cognitive ability to maximize the spectrum utility and provide

more robust communications links.

The recent introduction of machine learning (ML) to wireless communica-

tions has in part to do with the new-found pervasiveness of ML throughout

the scientific community and in part to do with the nature of the problems

that arise in wireless communications. With the advent of advances in com-

puting power and ability to collect and store massive amounts of data, ML

techniques have found their way into many different scientific domains in an

attempt to put both of the aforementioned to good use. This concept is equally

true in wireless communications. Additionally, problems that arise in wireless

communication systems are frequently formulated as classification, detection,

estimation, and optimization problems; all of which ML techniques can provide

elegant and practical solutions to. In this context, the application of ML to

wireless communications seems almost natural and presents a clear motivation

[Bkassiny et al., 2013, Jiang et al., 2017, Chen et al., 2017].

The objective of this chapter is to provide a detailed insight on the influence

artificial neural network (ANN) has had on the physical layer. To begin, we

provide an overview of the ANN in Section 13.2. In Section 13.3, we discuss the

applications of ANN to physical layer specifically to acquire signal intelligence.

Next, in Section 13.4, we discuss the implications of hardware implementations

in context of ML. Finally, in Section 13.5, we discuss the open problems that

may be currently debilitating the application of ML in wireless systems.

3

13.2. Overview of Artificial Neural Net-

work

Before we begin, we would like to introduce some standard notations that will

be used throughout this chapter. We use boldface upper and lower-case letters

to denote matrices and column vectors, respectively. For a vector x, xi denotes

the i-th element, ‖x‖ indicates the Euclidean norm, xᵀ its transpose, and x · y

the Euclidean inner product of x and y. For a matrix H, Hij will indicate the

(i,j)-th element of H. The notation R and C will indicate the set of real and

complex numbers, respectively. The notation Ex∼p(x)

[
f(x)

]
is used to denote

the expected value, or average of the function f(x) where the random variable

x is drawn from the distribution p(x). When a probability distribution of a

random variable, x, is conditioned on a set of parameters, θ, we write p(x; θ)

to emphasize the fact that θ parameterizes the distribution and reserve the

typical conditional distribution notation, p(x|y), for the distribution of the

random variable x conditioned on the random variable y. We use the standard

notation for operations on sets where ∪ and ∩ are the infix operators denoting

the union and intersection of two sets, respectively. We use Sk ⊆ S to say that

Sk is either a strict subset of or equal to the set S and x ∈ S to denote that

x is an element of the set S. ∅ is used to denote the empty set and |S| the

cardinality of a set S. Lastly, the convolution operator is denoted as ∗.

13.2.1. Feedforward Neural Networks

The original formulation of feedforward neural networks was proposed by

Rosenblatt [1962]. It can be seen as an extension to the perceptron algorithm,

4

originally developed by Rosenblatt [1957], with an element-wise nonlinear tran-

sition function applied to the linear classifier. This nonlinear transition function

allows the hyperplane decision boundary to take a nonlinear form, allowing the

model to separate training data that is not linearly separable. The formulation

for a single layer is as follows,

y = σ(wTx + b) (13.1)

where x is the training example input, y is the layer output, w are the layer

weights, b is the bias. One common approach to handling the bias is to add an

additional parameter to the weight vector and append a 1 to the input vector.

When a bias term is omitted this formulation can be assumed unless otherwise

stated throughout the section.

The nonlinear transition function, σ, is also referred to the activation func-

tion throughout literature. This is often chosen from a handful of commonly

used nonlinear functions for different applications. The most widely used acti-

vation functions are the following,

σ(z) =
1

1 + e−z
, (13.2)

ReLU = max(0, z), and (13.3)

tanh(z) =
ez − e−z

ez + e−z
(13.4)

Additionally, the radial basis function (RBF) kernel function can be used

as an activation function and doing so gives rise to the radial basis function

neural network (RBFNN), as introduced by Broomhead and Lowe [1988]. To

increase the complexity of the model, and thus its ability to learn more complex

5

relationships between the input features, network layers can be subsequently

added to the model that accepts the previous layer’s output as input. Doing

so results in a deep neural network (DNN). The function of the network as a

whole φ(x) thus becomes,

φ(x) = W(3)σ(W(2)σ(W(1)x)) (13.5)

where the weight matrices W(i) are indexed according to the layer they be-

long to. Intuitively, this allows the first layer to learn linear functions between

the input features, the second layer to learn nonlinear combinations of these

functions, and the third layer to learn increasingly more complex nonlinear

combinations of these functions. This formulation additionally gives rise to a

nice graphical interpretation of the model, which is widely used in literature

and given in Figure 13.1.

𝒋

𝒌

INPUT LAYER

HIDDEN LAYERS

Output

𝟎 න𝟎

𝒘𝒋𝒌
𝒍

𝒂𝒉
𝒍−𝟏

𝒂𝒊
𝒍−𝟏

𝒂𝒋
𝒍−𝟏 𝒃𝒌

𝒍

𝒂𝒌
𝒍

𝒘𝒉𝒌
𝒍

𝒘𝒊𝒌
𝒍

Neuron 𝒌 of layer 𝒍

Input Design of neuron

OUTPUT LAYER

Layer 𝒍 . . .

. . .

. . .

. . .

FE
A

TU
R

E
V

EC
TO

R

C
H

O
SEN

 M
O

D
U

LA
TIO

N

𝒛𝒌
𝒍

Figure 13.1: Standard Framework of Feed Forward Neural Network

This graphical interpretation is also where the feedforward neural network

gets its loose biological interpretation. Each solid line in Figure 13.1 denotes

a weighted connection in the graph. The input, output, and hidden layers

are denoted as such in the graph and a close up of one node in the graph is

6

provided. This close up calls the single node, a neuron, but it can equivalently

be referred to simply as a unit in this text and throughout literature. The close

up also shows the inputs to the neuron, the weighted connections from the

previous layer, the weighted sum of inputs, and the activation value, denoted

as al−1
i , wl

ik, zlk, and alk, respectively. Occasionally, a neuron employing a given

activation function may be referred to as that type of unit in this text and

throughout literature, i.e. a unit with a ReLU activation function may be

called a “ReLU unit”.

The most common way to train most kinds of neural networks is the opti-

mization method called stochastic gradient descent (SGD). SGD is similar to

well known gradient descent methods with the exception that the true gradient

of the loss function with respect to the model parameters is not used to update

the parameters. Usually, the gradient is computed using the loss with respect

to a single training example or some subset of the entire training set, which is

typically referred to as a mini-batch, resulting in mini-batch SGD. This results

in the updates of the network following a noisy gradient, which in fact, often

helps the learning process of the network by being able to avoid convergence on

local minima which are prevalent in the non-convex loss landscapes of neural

networks. The standard approach to applying SGD to the model parameters

is through the repeated application of the chain rule of derivation using the

famous back-propagation algorithm developed by Rumelhart et al. [1986].

The last layer in a given neural network is called the output layer. The

output layer differs from the inner layers in that the choice of the activation

function used in the output layer is tightly coupled with the selection of the

loss function and the desired structure of the output of the network. Generally,

the following discussion of output layers and loss functions applies to all neural

7

networks, including the ones introduced later in this section.

Perhaps the simplest of output unit activation functions is that of the linear

output function. It takes the following form,

ŷ = WTh + b (13.6)

where W is the output layer weight matrix, h are the latent features output

from the previous layer, and ŷ are the estimated output targets. Coupling a lin-

ear output activation function with a mean squared error loss function results

in the maximizing the log-likelihood of the following conditional distribution,

p(y|x) = N(y; ŷ, I) (13.7)

Another task prominent among ML problems is that of binary classification.

In a binary classification task, the output target assumes one of two values and

thus can be characterized by a Bernoulli distribution, p(y = 1|x). Since the

output of a purely linear layer has a range over the entire real line, we motivate

the use of a function that “squashes” the output to lie in the interval [0, 1],

thus obtaining a proper probability. The logistic sigmoid does exactly this and

it is, in fact, the preferred method to obtain a Bernoulli output distribution.

Accordingly, the output layer becomes,

ŷ = σ(WTx + b) (13.8)

The negative log-likelihood loss function, used for maximum likelihood estima-

tion, of the above output layer is given as,

L(θ) = −log(p(y|x)) = f((1− 2y)z) (13.9)

8

where f(x) = log(1 + ex) is called the softplus function and z = WTx + b is

called the activation value. The derivation of Eq. (13.9) is not provided here

but can be found in [Goodfellow et al., 2016a] for the interested reader.

In the case when the task calls for a multi-class classification, we want a

Multinoulli output distribution rather than a Bernoulli output distribution.

The Multinoulli distribution assigns a probability that a particular example

belongs to a particular class. Obviously, the sum over class probabilities for a

single example should be equal to 1. The Multinoulli distribution is given as

the conditional distribution: ŷi = p(y = i|x). It is important to note that the

output, ŷ, is now an n-dimensional vector containing the probability that x

belongs to class i ∈ [0, n] at each index i in the output vector. The targets

for such a classification task are often encoded as an n-dimensional vector

containing (n− 1) 0’s and one 1, located at an index j which denotes that the

associated training example belongs to the class j. This type of target vector

is commonly referred to as a one-hot vector. The output function that achieves

the Multinoulli distribution in the maximum likelihood setting is called the

softmax function and is given as,

softmax(z)i =
ez∑
j e

zj
(13.10)

where zj is the linear activation at an output unit j. Softmax output units

are almost exclusively coupled with a negative log-likelihood loss function. Not

only does this give rise to the maximum likelihood estimate for the Multinoulli

output distribution but the log in the loss function is able to undo the expo-

nential in the softmax which keeps the output units from saturating and allows

the gradient to be well-behaved, allowing the learning to proceed [Goodfellow

et al., 2016b].

9

13.2.2. Convolutional Neural Networks

The convolutional neural networks (CNN) was originally introduced by LeCun

et al. [1989] as a means to handle grid-like input data more efficiently. Input

of this type could be in the form of a time-series but is more typically found

as image-based input. The formulation of CNNs additionally has biological

underpinnings related to the human visual cortex.

CNNs are very similar to the feedforward networks introduced previously

with the exception that they use a convolution operation in place of a matrix

multiplication in the computation of a unit’s activation value. In this section,

we assume that the reader is familiar with the concept of the convolution

operation on two continuous functions, where one function, the input func-

tion, is convolved with the convolution kernel. The primary differences from

the aforementioned notion of convolution and convolution in the CNN setting

are that the convolution operation is discretized (for practical implementa-

tion purposes) and that it is often truly the cross-correlation operation that is

performed in CNNs rather than true convolution. This means that the kernel

is not typically flipped before convolving it with the input function. This is

primarily done for practical implementation purposes and does not typically

affect the efficacy of the CNN in practice.

Convolution in the context of CNNs is thus defined as the following, for an

input image I,

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (13.11)

where K is the convolution kernel and the output, S, is often referred to as

the feature map throughout literature. It is important to note that the above

10

formulation is for two dimensional convolution but can be extended to input

data of different dimensions. The entries of K can be seen as analogous to the

weight parameters described previously (Section 13.2.1) and can be learned in a

similar manner using SGD and the back-propagation (BP) algorithm [Rumel-

hart et al., 1986]. Intuitively, one can imagine having multiple K kernels in

a single CNN layer being analogous to having multiple neurons in a single

feedforward neural network layer. The output feature maps will be grid-like

and subsequent convolutional layers can be applied to these feature maps after

the element-wise application of one of the aforementioned nonlinear activation

functions.

In addition to convolutional layers, CNNs often employ a separate kind of

layer called pooling layers. The primary purpose of a pooling layer is to replace

the output of the network at a certain location with a type of summarization

of the outputs within a local neighborhood. Examples of pooling layers include

max pooling [Zhou and Chellappa, 1988], average pooling, L2 norm pooling,

and distance weighted average pooling. A max pooling layer would summarize

some rectangular region of the input image by selecting only the maximum

activation value present in the region as output from the pooling layer. Pooling

layers improve the efficacy of CNNs in a few different ways. First, they help

make the learned representation of the input invariant to small translations,

which is useful when aiming to determine the presence of a feature in the

input rather than its location. Second, pooling layers help condense the size

of the network since convolutional layers do not inherently do so. A binary

classification task taking image data with size 256×256×3 will need to reduce

the size of the net to a single output neuron to make use of the output layer and

cost function pairs described previously in Section 13.2.1. Lastly, pooling layers

11

lead to infinitely strong prior distributions making the CNN more statistically

efficient [Goodfellow et al., 2016a].

Some common adaptations applied to CNNs come in the form of allowing

information flow to skip certain layers within the network. While the following

adaptions were demonstrated on CNNs and long short term memorys (LSTMs)

(a type of recurrent neural network (RNN)), the concepts can be applied to

any of the networks presented in this chapter. A residual network (RN), or

ResNet He et al. [2015], is a neural network which contains a connection from

the output of a layer, say Li−2, to the input of the layer Li. This connection

allows the activation of the Li−2 layer to skip over the layer Li−1 such that

a “residual function” is learned from layer Li−2 to layer Li. The RN uses an

identity operation on the activation of the Li−2 layer, meaning the values are

unchanged, prior to adding them to the values input to layer Li. Conversely,

a highway neural network Srivastava et al. [2015], allows a similar skip con-

nection over layers but additionally applies weights and activation functions to

these connections so a nonlinear relationship can be learned. Lastly, a dense

neural network Huang et al. [2016] is a network that employs such weighted

connections between each layer and all of its subsequent layers. The motiva-

tion behind each of these techniques is similar in that they attempt to mitigate

learning problems associated with vanishing gradients Hochreiter et al. [2001].

For each of these networks, the BP algorithm that [Rumelhart et al., 1986] used

must be augmented to incorporate the flow of error over these connections.

12

13.3. Neural Networks For Signal Intel-

ligence

ML techniques for signal intelligence typically manifest themselves as solu-

tions to discriminative tasks. That is, many applications focus on multi-class

or binary classification tasks. Perhaps the most prevalent signal intelligence

task solved using ML techniques is that of automatic modulation classifica-

tion (AMC). In short, this task involves determining what scheme was used to

modulate the transmitted signal, given the raw signal observed at the receiver.

Other signal intelligence tasks that employ ML solutions include wireless in-

terference classification. In this section, different state of the art ML solutions

to these signal intelligence tasks are discussed in further detail.

13.3.1. Modulation Classification

The deep learning (DL) solutions to modulation classification tasks have re-

ceived significant attention in the last two years [O’Shea et al., 2018, O’Shea

and Hoydis, 2017, Wang et al., 2017, West and O’Shea, 2017, Kulin et al.,

2018, Karra et al., 2017]. O’Shea et al. [2018] present several DL models to

address the modulation recognition problem, while Karra et al. [2017] train

hierarchical deep neural networks to identify data type, modulation class and

modulation order. Kulin et al. [2018] present a conceptual framework for end-

to-end wireless DL, followed by a comprehensive overview of the methodology

for collecting spectrum data, designing wireless signal representations, forming

training data and training deep neural networks for wireless signal classification

tasks.

13

The task of AMC is pertinent in signal intelligence applications as the

modulation scheme of the received signal can provide insight to what type of

communication frameworks and emitters are present in the local RF environ-

ment. The problem at large can be formulated as estimating the conditional

distribution, p(y|x), where y represents the modulation structure of the signal

and x is the received signal.

Traditionally, AMC techniques are broadly classified as maximum likeli-

hood based approaches [Ozdemir et al., 2013, 2015, Wimalajeewa et al., 2015,

Foulke et al., 2014, Jagannath et al., 2015], feature-based approaches [Azzouz

and Nandi, 1996, Hazza et al., 2012, Kubankova et al., 2010] and hybrid tech-

niques [Jagannath et al., 2017]. Prior to the introduction of ML, AMC tasks

were often solved using complex hand engineered features computed from the

raw signal. While these features alone can provide insight about the modula-

tion structure of the received signal, ML algorithms can often provide a better

generalization to new unseen data sets, making their employment preferable

over solely feature based approaches. The logical remedy to the use of complex

hand engineered feature based classifiers are models that aim to learn directly

from received data. Recent work done by O’Shea and Corgan [2016] show that

deep convolutional neural networks (DCNNs) trained directly on complex time

domain signal data outperform traditional models using cyclic moment feature

based classifiers. In the work done by Shengliang Peng and Yao [2017], the

authors propose a DCNN model trained on the two-dimensional constellation

plots generated from the received signal data and show that their approach

outperforms other approaches using cumulant based classifiers and support

vector machines (SVMs).

While strictly feature based approaches may become antiquated with the

14

advent of the application of ML to signal intelligence, expert feature analysis

can provide some useful inputs to ML algorithms. In [Jagannath et al., 2018b],

we compute hand engineered features directly from the raw received signal

and apply a feedforward neural network classifier to the features to provide an

AMC. The discrete time complex valued received signal can be represented as,

y(n) = h(n)x(n) + w(n), n = 1, ..., N (13.12)

where x(n) is the discrete-time transmitted signal, h(n) is the complex valued

channel gain that follows a Gaussian distribution and w(n) is the additive

complex zero-mean white Gaussian noise process at the receiver with two-sided

power spectral density (PSD) N0/2. The received signal is passed through an

Automatic Gain Control prior to the computation of feature values.

The first feature value computed from the received signal is the variance of

the amplitude of the signal and is given by,

V ar(|y(n)|) =

∑
Ns

(|y(n)| − E(|y(n)|))2

Ns
(13.13)

where |y(n)| is the absolute value of the over-sampled signal and E(|y(n)|)

represents the mean computed from Ns samples. This feature provides infor-

mation which helps distinguish frequency shift keying (FSK) modulations from

the phase shift keying (PSK) and quadrature amplitude modulation (QAM)

modulation structures also considered in the classification task. The second

and third features considered are the mean and variance of the maximum

value of the power spectral density of the normalized centered-instantaneous

15

amplitude, which is given as,

γmax =
max

∣∣FFT (acn(n))
∣∣2

Ns
, (13.14)

where FFT (.) represents the fast Fourier transform (FFT) function, acn(n) ,

a(n)
ma
− 1, ma = 1

Ns

∑Ns
n=1 a(n), and a(n) is the absolute value of the complex-

valued received signal. This feature provides a measure of the deviation of the

PSD from its average value. The mean and variance of this feature computed

over subsets of a given training example are used as two separate entries in

the feature vector input into the classification algorithm, corresponding to the

second and third features, respectively.

The fourth feature used in our work was computed using higher order

statistics of the received signal. Namely, cumulants, are known to be invariant

to the various distortions commonly seen in random signals and are computed

as follows,

Clk =

No. of partitions in l∑
p

(−1)p−1(p− 1)!

p∏
j=1

E{ylj−kjy∗kj}, (13.15)

where l denotes the order and k denotes the number of conjugations involved

in the computation of the statistic. We use the ratio, C40/C42 as the fourth

feature which is computed using,

C42 = E(|y|4)− |E(y2)|2 − 2E(|y|2)2, (13.16)

C40 = E(y4)− 3E(y2)2. (13.17)

The fifth feature used in our work is called the in-band spectral variation as

it allows discrimination between the FSK modulations considered in the task.

16

We define V ar(f) as,

V ar(f) = V ar
(
F
(
y(t)

))
, (13.18)

where F(y(t)) =
{
Y (f) − Y (f − F0)

}+fi
f=−fi

/F0, F0 is the step size, Y (f) =

FFT (y(t)), and [−fi,+fi] is the frequency band of interest.

The final feature used in the classifier is the variance of the deviation of

the normalized signal from the unit circle, which is denoted as V ar(∆o). It is

given as,

∆o =
|y(t)|
E(|y|)

− 1. (13.19)

This feature helps the classifier discriminate between PSK and QAM modula-

tion schemes.

The modulations considered in the work are the following: binary phase

shift keying (BPSK), quadrature phase shift keying (QPSK), 8PSK, 16QAM,

continuos phase frequency shift keying (CPFSK), Gaussian frequency shift key-

ing (GFSK), and Gaussian minimum shift keying (GMSK). This characterizes

a seven class classification task using the aforementioned six features computed

from each training example. To generate the data set, a total of 35,000 exam-

ples were collected: 1,000 examples for each modulation at each of the five

signal-to-noise-ratio (SNR) scenarios considered in the work. Three different

feedforward neural network structures were trained at each SNR scenario using

a training set consisting of 80% of the data collected at the given SNR and a

test set consisting of the remaining 20%. The three feedforward nets differed

in the number of hidden layers, ranging from one to three. Qualitatively, the

feedforward network with one hidden layer outperformed the other models in

all but the least favorable SNR scenario, achieving the highest classification

accuracy of 98% in the most favorable SNR scenario. The seemingly paradox-

17

ical behavior is attributed to the over-fitting of the training data when using

the higher complexity models, leading to poorer generalization in the test set.

This work has been further extended to evaluate other ML techniques using

the same features. Accordingly, we found that training a random forest classifier

for the same AMC task yielded similar results to the feedforward network

classifier. Additionally, the random forest classifier was found to outperform the

DNN approach in scenarios when the exact center frequency of the transmitter

was not known, which was assumed to be given in Jagannath et al. [2018b].

The random forest classifier was comprised of 20 classification and regression

treess (CARTs) constructed using the gini impurity function. At each split a

subset of the feature vectors with cardinality equal to 3 was considered.

An alternative approach to the previously described method is to learn the

modulation of the received signal from different representations of the raw sig-

nal. Kulin et al. [2018] train DCNNs to learn the modulation of various signals

using three separate representations of the raw received signal. In the work, the

raw complex valued received signal training examples are denoted as rk ∈ CN ,

where k indexes the procured training data set and N is the number of complex

valued samples in each training example. We inherit this notation for presen-

tation of their findings. The data set in the work was collected by sampling a

continuous transmission for a period of time and subsequently segmenting the

received samples into N dimensional data vectors.

Kulin et al. [2018] train separate DCNNs on three different representations

of the raw received signal and compare their results to evaluate which repre-

sentation provides the best classification accuracy. The first of the three signal

representations are given as a 2 × N dimensional in-phase/quadrature (I/Q)

matrix containing real valued data vectors carrying the I/Q information of the

18

raw signal, denoted xi and xq, respectively. Mathematically,

xIQk =

xTi
xTq

 (13.20)

where xIQk ∈ R2×N . The second representation used is a mapping from the

complex values of the raw received signal into two real valued vectors repre-

senting the phase, Φ and the magnitude, A,

x
A/Φ
k =

xTA
xTΦ

 (13.21)

Where x
A/Φ
k ∈ R2×N and the phase vector xTΦ ∈ RN and magnitude vector

xTA ∈ RN have elements,

xΦn = arctan

(
rqn
rin

)
, xAn = (r2

qn + r2
in)

1
2 (13.22)

respectively. The third representation is a frequency domain representation of

the raw time domain complex signal. It is characterized by two real valued data

vectors, one containing the real components of the complex FFT, <(Xk), and

the other containing the imaginary components of the complex FFT, =(Xk),

giving,

xFk =

<(Xk)T

=(Xk)T

 (13.23)

Using these three representations of the raw signal, three DCNNs with identical

structure are trained on each representation and the accuracy of the resultant

models are compared to determine which representation allows for learning the

best mapping from raw signal to modulation structure.

19

Each training example comprised of N = 128 samples of the raw signal

sampled at 1 MS/s (mega-samples per seconds) and the following 11 modula-

tion formats were condsidered in the classification task: BPSK, QPSK, 8-PSK,

16-QAM, 64-QAM, CPFSK, GFSK, 4-pulse-amplitude modulation (PAM),

wideband Frequency Modulation (WBFM), amplitude modulation (AM)-double-

sideband modulation (DSB), and AM-single-sideband modulation (SSB). Thus,

the training targets yk ∈ R11 are encoded as one-hot vectors where the index

holding an i corresponds to the modulation of the signal. A total of 220,000

training examples xk ∈ R2×128 were acquired uniformly over different SNR

scenarios ranging from −20dB to +20dB.

The DCNN structure used for each signal representation is the same and

consists of two convolutional layers, a fully connected layer, and a softmax out-

put layer trained using the negative log-likelihood loss function. The activation

function used in each of the convolutional layers and the fully connected layer

is the ReLU function. The DCNNs were trained using a training set comprised

of 67% of the total data set, with the rest of the data set being used as test

and validation sets. An Adam optimizer [Kingma and Ba, 2014] was used to

optimize the training processes for a total of 70 epochs. The metrics used to

evaluate each of the models include the precision, recall, and F1 score of each

model. In the work, a range of values is provided for the three aforementioned

metrics for the CNN models trained on different data representations for three

different SNR scenarios: high, medium, and low, corresponding to 18dB, 0dB,

and −8dB, respectively. In the high SNR scenario, it is reported that the pre-

cision, recall, and F1 score of each of the three CNN models fall in the range of

0.67− 0.86. For the medium and low SNR scenarios, the same metrics are re-

ported in the ranges of 0.59−0.75 and 0.22−0.36, respectively. This relatively

20

low performance can be attributed to the choice of the channel model used

when generating the data, namely, a time-varying multipath fading channel.

Furthermore, what is evaluated also includes the classification accuracy of

each of the three models trained using different data representations under sim-

ilar SNR conditions. Qualitatively, each of the three DCNN models performs

similarly at low SNR, while the DCNN trained on the I/Q representation of

data yields a better accuracy at medium SNR, and the DCNN trained on the

amplitude and phase representation yields a better accuracy at high SNR. In-

terestingly, the DCNN trained on the frequency domain representation of the

data performs significantly worse than the I/Q and A/φ DCNNs at high SNR.

This could potentially be due to the similar characteristics exhibited in the fre-

quency domain representation of the PSK and QAM modulations used in the

classification problem. The primary takeaways from this work are that learning

to classify modulation directly from different representations of the raw signal

can be an effective means of developing a solution to the AMC task; however,

the efficacy of the classifier is dependent on how the raw signal is represented

to the learning algorithm.

13.3.2. Wireless Interference Classification

The wireless interference classification (WIC) is a classification task that essen-

tially refers to identifying what type of wireless emitter exists in the environ-

ment. The motivation behind such a task is that it can often be helpful to know

what type of emitters are present (WiFi, Zigbee, Bluetooth, etc.) so that you

can effectively attempt to avoid interference and coexist with other emitters

sharing the resources. Recent work done by Selim et al. [2017] show the use of

21

DCNNs to classify radar signals using both spectrogram and amplitude-phase

representations of the received signal. In the work presented by Akeret et al.

[2017], DCNN models are proposed to accomplish interference classification on

two-dimensional time-frequency representations of the received signal to mit-

igate the effects of radio interference in cosmological data. Additionally, the

authors of Czech et al. [2018] employ DCNN and LSTM models to achieve a

similar end.

Kulin et al. [2018] propose to employ DCNNs for the purpose of the wire-

less interference classification of three different wireless communication systems

based on the WiFi, Zigbee, and Bluetooth standards. They look at five different

channels for each of the three standards and construct a fifteen class classifi-

cation task for which they obtain 225, 225 training vectors consisting of 128

samples each, where samples were collected at 10 MS/s. A flat fading channel

with additive white Gaussian noise is assumed for this classification task.

Three DCNNs were trained and evaluated using the wireless interference

classification data set described above. Each of the three DCNNs was trained

on one of the representations of the data that were presented in the previous

section that discussed AMC. The DCNN architectures were also the same as

presented previously in Section 13.3.1.

Each of the three DCNNs trained using different data representations was

evaluated in a similar fashion to the evaluation method described in Section

13.3.1, namely, using precision, recall, and F1 score under different SNR sce-

narios. For the wireless interference classification task, the precision, recall, and

F1 score of each of the three DCNNs all fell in the interval from 0.98 − 0.99

under the high SNR scenario. For the medium and low SNR scenarios, the

analogous intervals were from 0.94− 0.99 and 0.81− 0.90, respectively.

22

Additionally, Kulin et al. [2018] provide an analysis of classification accu-

racy for each of the three DCNN models at varying SNRs. For the task of

wireless interference classification, the DCNN model trained on the frequency

domain representation of the data outperforms the other models at all SNRs

and especially so in lower SNR scenarios. These findings are due to the fact

that the wireless signals that were considered have more expressive features

in the frequency domain as they have different bandwidth, modulation, and

spreading characteristics.

Youssef et al. [2017] take a different approach to the wireless interference

classification task and primarily compare different types of learning models

rather than different types of data representation. The proposed models in-

clude deep feedforward networks, deep convolutional networks, support vec-

tor machines using two different kernels, and a multi-stage training (MST)

algorithm using two different learning algorithms. In the work, 12 different

transmitters are considered and 1,000 packets from each transmitter are col-

lected for a total of 12,000 packets which comprise the entire data set. Each

transmitter transmitted the same exact 1,000 packets, which were generated

using pseudo-random values injected into the modem. All of the transmitters

used a proprietary orthogonal frequency-division multiplexing (OFDM) pro-

tocol with a QPSK modulation scheme and a baseband transmitter sample

rate of 1.92 MS/s. At the receiver, each packet is represented by 10,000 time

domain I/Q samples. Each of the models was trained on data sets consisting

of training examples made up of 32, 64, 128, 256, 512, and 1024 samples from

each packet, and their performance is compared across data sets. Given the

23

complex valued received signal,

f = (f1, f2,, fN) (13.24)

N samples were selected by skipping the first N0 samples of a packet where

|R(fi)| < τ for some τ > 0 yielding the signal vector g,

g = (fN0 , fN0+1, ..., fN0+N−1) (13.25)

For the DNN, SVM, and MST models each training example was constructed

by concatenating the real and imaginary parts of the signal vector, yielding a

vector of dimension 2N . For the DCNN model the real and imaginary parts of

the signal vector were stacked to generate 2×N dimensional training vectors.

The DNN architecture considered in the work consisted of two fully con-

nected hidden layers, comprised of 128 ReLU units each and an output layer

consisting of logistic sigmoid units. The network was trained using the Adam

optimizer [Kingma and Ba, 2014] and mini-batch size of 32.

The DCNN model used by the authors was composed of two convolutional

layers using 64 (8× 2) and 32 (16× 1) filters, respectively. Each convolutional

layer was input into a max-pool layer with a pool size of 2×2 and 2×1, respec-

tively. The output of the second max-pool layer was fed into a fully-connected

layer consisting of 128 ReLU units. An output layer employing logistic sigmoid

units was used on top of the fully-connected layer.

The two SVM architectures analyzed in the work differ only in the kernel

function used. The first architecture employed the polynomial kernel and the

second employed the Pearson VII Universal Kernel [Üstün et al., 2005]. Both

architectures used Platt’s Minimization Optimization algorithm to compute

24

the maximum-margin hyperplanes.

Furthermore, an analysis of the performance of MST multi-layer percep-

trons (MLPs) trained using first order and second order methods is provided.

A high level description of MST MLP is presented here and we refer the inter-

ested reader to Youssef et al. [2015] for a more rigorous derivation. The MST

method to training neural networks, as presented in the work, is essentially

a hierarchical way to solve an optimization problem by solving smaller con-

stituent optimization problems. To this end, in what is called the first stage, a

number of separate MLPs would be trained on different subsets of the training

data set. This can be seen in the lowest layer of the hierarchical representation

adapted from Youssef et al. [2017], and provided in Figure 13.2.

MLP

MLPMLP

MLPMLPMLP

Input
𝐷𝑖 ⊂ 𝐷

Output

Input
𝐷𝑖 ⊂ 𝐷

Input
𝐷𝑖 ⊂ 𝐷

Figure 13.2: Adaptation of MST MLP used by Youssef et al. [2017].

Once the first stage is trained, a second stage is trained by taking the

concatenation of the network outputs from the first stage as input. Training

can continue in this fashion for subsequent stages. One of the advantages of

training networks in this way is that the many smaller MLPs comprising the

larger classifier can be efficiently trained using second order optimization meth-

ods. Second order optimization methods such as Newton, Gauss-Newton, or

Levenberg-Marquardt methods are usually intractable due to the size of typi-

cal networks but can provide better convergence when applicable. Two 3-stage

25

MST systems were trained in the work, one using the first order method of

SGD, and the other using the second order Accelerated Levenberg-Marquardt

method [K. Youssef]. Each MST system had an identical structure where stage

1 consisted of 60 MLPs with 2 hidden layers and 10 units in each layer. Stage

2 and 3 had the same architecture and were comprised of 30 MLPs with each

MLP consisting of 2 hidden layers made up of 15 units each. All hidden units

employed the tanh activation function and all output layers contained linear

units.

All of the models described above were trained on 10 different iterations

of the collected data set and their performance was compared. Five data sets

were constructed using training examples made up of 32, 64, 128, 256, and 512

samples and then each model was trained twice, using a training set comprised

of 90% and 10% of the total data set, for a total of 10 different data sets for

each model. In general, the MST system trained using second order methods on

90% of the training data performed best across all sizes of training examples,

yielding a classification accuracy of 100% for each data set. All of the models

performed better when trained using 90% of the data set as opposed to 10% of

the training data set. Generally, each model performed better when provided

with training examples that contained more samples, with the exception of the

deep feedforward network model, which could be attributed to the fact that

longer sequences of samples may contain an increasing number of artifacts

which the DNN may not be robust to.

A summarization of the different models presented in this section is pro-

vided in Table 13.1.

26

Table 13.1: Summary of ML Solutions for Signal Intelligence

Classifiers Task Representation Model

Jagannath et al.
[2018b]

AMC Feature-Based DNN

Kulin et al. [2018] AMC I/Q, A/Φ, FFT DCNN

O’Shea and Corgan
[2016]

AMC I/Q DCNN

Shengliang Peng
and Yao [2017]

AMC Constellation DCNN

Kulin et al. [2018] WIC I/Q, A/Φ, FFT DCNN

Selim et al. [2017] WIC 2D time-frequency,
A/Φ

DCNN

Akeret et al. [2017] WIC 2D time-frequency DCNN

Czech et al. [2018] WIC 2D time-frequency DCNN, LSTM

Youssef et al. [2017] WIC I/Q DNN, DCNN,
SVM, MST

13.4. Neural Networks for Spectrum Sens-

ing

One of the key challenges in enabling real-time inference from spectrum data is

how to effectively and efficiently extract meaningful and actionable knowledge

out of the tens of millions of I/Q samples received every second by wireless de-

vices. Indeed, a single 20 MHz-wide WiFi channel generates an I/Q stream rate

of about 1.28 Gbit/s, if I/Q samples are each stored in a 4-byte word. Moreover,

the RF channel is significantly time-varying (i.e., in the order of milliseconds),

which imposes strict timing constraints on the validity of the extracted RF

knowledge. If (for example) the RF channel changes every 10ms, a knowledge

extraction algorithm must run with latency (much) less than 10ms to both (i)

offer an accurate RF prediction and (ii) drive an appropriate physical-layer

response; for example, change in modulation/coding/beamforming vectors due

27

to adverse channel conditions, local oscillator (LO) frequency due to spectrum

reuse, and so on.

As discussed earlier, DL has been a prominent technology of choice for

solving classification problems for which no well-defined mathematical model

exists. It enables the analysis of unprocessed I/Q samples without the need of

application-specific and computational-expensive feature extraction and selec-

tion algorithms [O’Shea et al., 2018], thus going far beyond traditional low-

dimensional ML techniques. Furthermore, DL architectures are application-

insensitive, meaning that the same architecture can be retrained for different

learning problems.

Decision-making at the physical layer may leverage the spectrum knowledge

provided by DL. On the other hand, RF DL algorithms must execute in real-

time (i.e., with static, known-a-priori latency) to achieve this goal. Traditional

central processing unit (CPU)-based knowledge extraction algorithms [Abadi

et al., 2016] are unable to meet strict time constraints, as general-purpose

CPUs can be interrupted at-will by concurrent processes and thus introduce

additional latency to the computation. Moreover, transferring data to the CPU

from the radio interface introduces unacceptable latency for the RF domain.

Finally, processing I/Q rates in the order of Gbit/s would require CPUs to

run continuously at maximum speed, and thus consume enormous amounts of

energy. For these reasons, RF DL algorithms must be closely integrated into

the RF signal processing chain of the embedded device.

28

13.4.1. Existing work

Most of the existing work is based on traditional low-dimensional machine

learning [Wong and Nandi, 2001, Xu et al., 2010, Pawar and Doherty, 2011,

Shi and Karasawa, 2012, Ghodeswar and Poonacha, 2015], which requires (i)

extraction and careful selection of complex features from the RF waveform (i.e.,

average, median, kurtosis, skewness, high-order cyclic moments, etc.); and (ii)

the establishment of tight decision bounds between classes based on the current

application, which are derived either from mathematical analysis or by learning

a carefully crafted dataset [Shalev-Shwartz and Ben-David, 2014]. In other

words, since feature-based machine learning is (a) significantly application-

specific in nature; and (b) introduces additional latency and computational

burden due to feature extraction, its application to real-time hardware-based

wireless spectrum analysis becomes impractical, as the wireless radio hardware

should be changed according to the specific application under consideration.

Recent advances in DL [LeCun et al., 2015] have prompted researchers

to investigate whether similar techniques can be used to analyze the sheer

complexity of the wireless spectrum. For a compendium of existing research on

the topic, the reader can refer to Mao et al. [2018]. Among other advantages,

DL is significantly amenable to be used for real-time hardware-based spectrum

analysis, since different model architectures can be reused to different problems

as long as weights and hyper-parameters can be changed through software.

Additionally, DL solutions to the physical layer modulation recognition task

have been given much attention over recent years, as previously discussed in

this chapter. The core issue with existing approaches is that they leverage DL to

perform offline spectrum analysis only. On the other hand, the opportunity of

real-time hardware-based spectrum knowledge inference remains substantially

29

uninvestigated.

13.4.2. Background on System-on-Chip Com-

puter Architecture

Due to its several advantages, we contend that one of the most appropriate

computing platform for RF DL is a System on Chip (SoC). An SoC is an in-

tegrated circuit (also known as “IC” or “chip”) that integrates all the compo-

nents of a computer, i.e., CPU, random access memory (RAM), input/output

(I/O) ports and secondary storage (e.g., SD card) – all on a single substrate

[Molanes et al., 2018]. SoCs have low power consumption [Pete Bennett (EE

Times), 2004] and allow the design and implementation of customized hardware

on the field-programmable gate array (FPGA) portion of the chip, also called

programmable logic (PL). Furthermore, SoCs bring unparalleled flexibility, as

the PL can be reprogrammed at-will according to the desired learning design.

The PL portion of the SoC can be managed by the processing system (PS),

i.e., the CPU, RAM, and associated buses.

SoCs use the Advanced eXtensible Interface (AXI) bus specification [Xil-

inx Inc., 2011] to exchange data (i) between functional blocks inside the PL;

and (ii) between the PS and PL. There are three main AXI sub-specifications:

AXI-Lite, AXI-Stream and AXI-Full. AXI-Lite is a lightweight, low-speed AXI

protocol for register access, and it is used to configure the circuits inside the

PL. AXI-Stream is used to transport data between circuits inside the PL.

AXI-Stream is widely used, since it provides (i) standard inter-block inter-

faces; and (ii) rate-insensitive design, since all the AXI-Stream interfaces share

the same bus clock, the high-level synthesis (HLS) design tool will handle the

30

handshake between DL layers and insert first-in first-outs (FIFOs) for buffer-

ing incoming/outgoing samples. AXI-Full is used to enable burst-based data

transfer from PL to PS (and vice versa). Along with AXI-Full, direct memory

access (DMA) is usually used to allow PL circuits to read/write data obtained

through AXI-Stream to the RAM residing in the PS. The use of DMA is crucial

since the CPU would be fully occupied for the entire duration of the read/write

operation, and thus unavailable to perform other work.

13.4.3. A Design Framework for Real-time RF

Deep Learning

One of the fundamental challenges to be addressed is how to transition from a

software-based DL implementation (e.g., developed with the Tensorflow Abadi

et al. [2016] engine) to a hardware-based implementation on an SoC. Basic

notions of high-level synthesis and a hardware design framework are presented

in Sections 13.4.3.1 and 13.4.3.2, respectively.

13.4.3.1. High-level Synthesis

HLS is an automated design process that interprets an algorithmic description

of a desired behavior (e.g., C/C++) and creates a model written in hardware

description language (HDL) that can be executed by the FPGA and imple-

ments the desired behavior [Winterstein et al., 2013]. Designing digital circuits

using HLS has several advantages over traditional approaches. First, HLS pro-

gramming models can implement almost any algorithm written in C/C++.

This allows the developer to spend less time on the HDL code and focus on

the algorithmic portion of the design, and at the same time avoid bugs and

31

increase efficiency, since HLS optimizes the circuit according to the system

specifications. The clock speed of today’s FPGAs is a few orders of magnitude

slower than CPUs (i.e., up to 200-300 MHz in the very best FPGAs). Thus,

parallelizing the circuit’s operations is crucial. In traditional HDL, transform-

ing the signal processing algorithms to fit FPGA’s parallel architecture requires

challenging programming efforts. On the other hand, an HLS toolchain can tell

how many cycles are needed for a circuit to generate all the outputs for a given

input size, given a target parallelization level. This helps to reach the best

trade-off between hardware complexity and latency. In addition, as shown in

the following, loop pipelining and loop unrolling could be used for a better

silicon convergence in terms of performance, power consumption and latency.

Loop Pipelining: In high-level languages (such as C/C++), the operations

in a loop are executed sequentially and the next iteration of the loop can only

begin when the last operation in the current loop iteration is complete. Loop

pipelining allows the operations in a loop to be implemented in a concurrent

manner.

Figure 13.3 shows an example of loop pipelining, where a simple loop of

three operations, i.e., read (RD), execute (EX), and write (WR), is executed

twice. For simplicity, we assume that each operation takes one clock cycle

to complete. Without loop pipelining, the loop would take 6 clock cycles to

complete. Conversely, with loop pipelining, the next RD operation is executed

concurrently to the EX operation in the first loop iteration. This brings the

total loop latency to 4 clock cycles. If the loop length were to increase to 100,

then the latency decrease would be even more evident: 300 versus 103 clock

cycles, corresponding to a speedup of about 65%. An important term for loop

pipelining is called initiation interval (II), which is the number of clock cycles

32

f o r (i n t i =0; i <2; i++) {
Op Read ; /∗ RD ∗/
Op Execute ; /∗ EX ∗/
Op Write ; /∗ WR ∗/

}

RD EX WR RD EX WR

Latency: 3 clock
cycles

Loop Latency: 6 clock cycles

RD EX WR
RD EX WR

(a) Without Loop Pipelining (b) With Loop Pipelining

Latency: 3 clock
cycles

Loop Latency:
4 clock cycles

Figure 13.3: Loop pipelining.

between the start times of consecutive loop iterations. In the example of Figure

13.3, the II is equal to one, because there is only one clock cycle between the

start times of consecutive loop iterations.

Loop Unrolling: Loop unrolling creates multiple copies of the loop body

and adjusts the loop iteration counter accordingly. For example, if a loop is

processed with an unrolling factor (UF) equal to 2 (i.e., two subsequent oper-

ations in the same clock cycle as shown in Figure 13.4), it may reduce a loop’s

latency by a factor of 50%, since a loop will execute in half the iterations usu-

ally needed. Higher UF and II may help achieve low latency but at the cost

of higher hardware resource consumption. Thus, the trade-off between latency

and hardware consumption should be thoroughly explored.

13.4.3.2. Design Steps

Our framework presents several design and development steps, which are illus-

trated in Figure 13.5. Steps that involve hardware, middleware (i.e., hardware

33

f o r (i n t i = 0 ; i < 10 ; i++) {
sum += a [i] ;

}

f o r (i n t i = 0 ; i < 10 ; i +=2) {
sum += a [i] ;
sum += a [i +1] ;

}

Figure 13.4: Loop unrolling.

description logic, or HDL), and software have been depicted with different

shades of grey.

CNN
HLS

Library

Software-based
DL Model

HLS
Code

Generation

HDL Circuit
Design

DL Core
Synthesis

HLS Optimization
(Pipeline, Unrolling)

Verify DL Core
Space Constraints

Synthesis
Verify PL

Space
Constraints

Check PL
Timing

Constraints

Implementation

Simulate DL Core
Space/Timing
Constraints

Deployment
on Hardware

Verify
Hardware and

Learning
Functionality

Software Middleware

Hardware

Figure 13.5: A Hardware Design Framework for RF Deep Learning.

The first major step of the framework is to take an existing DL model

and convert the model in HLS language, so it can be optimized and later

on synthesized in hardware. Another critical challenge is how to make the

hardware implementation fully reconfigurable, i.e., the weights of the DL model

may need to be changed by the Controller according to the specific training.

To address these issues, we distinguish between (i) the DL model architecture,

which is the set of layers and hyper-parameters that compose the model itself,

and (ii) the parameters of each layer, i.e., the neurons’ and filters’ weights.

34

To generate the HLS code describing the software-based DL model, an

HLS Library, which provides a set of HLS functions that parse the software-

based DL model architecture and generates the HLS design corresponding to

the desired architecture. The HLS Library supports the generation of convolu-

tional, fully-connected, rectified linear unit, and pooling layers, and operated

on fixed-point arithmetic for better latency and hardware resource consump-

tion. The HLS code is subsequently translated to HDL code by an automated

tool that takes into account optimization directives such as loop pipelining and

loop unrolling. At this stage, the HDL describing the DL core can be simu-

lated to (i) calculate the amount of PL resources consumed by the circuit (i.e.,

flip-flops, BRAM blocks, etc); and (ii) estimate the circuit latency in terms

of clock cycles. After a compromise between space and latency as dictated by

the application has been found, the DL core can be synthesized and integrated

with the other PL components, and thus total space constraints can be ver-

ified. After implementation (i.e., placing/routing), the PL timing constraints

can be verified, and finally the whole system can be deployed on the SoC and

its functionality tested.

13.5. Open Problems

In this section, we discuss a set of open challenges overcoming which will accel-

erate the induction of ML techniques to future wireless communications and

networking.

35

13.5.1. Lack of Large-scale Wireless Signal Datasets

It is well known that learning algorithms require a considerable amount of data

to be able to effectively learn from a training dataset. Moreover, to compare

the performance of different learning models and algorithms, it is imperative to

use the same sets of data. More mature learning fields, such as computer vision

and natural language processing (NLP) already have standardized datasets for

these purposes [Deng, 2012, Deng et al., 2009]. However, literature still lacks

large-scale datasets for RF ML.

This is not without a reason. Although the wireless domain allows the

synthetic generation of signals having the desired characteristics (e.g., modu-

lation, frequency content, and so on), problems such as RF fingerprinting and

jamming detection require data that captures the unique characteristics of de-

vices and wireless channels. Therefore, significant research effort must be put

forth to build large-scale wireless signal datasets to be shared with the research

community at large.

13.5.2. Choice of I/Q Data Representation For-

mat

It is still subject of debate within the research community what is the best data

representation for RF deep learning applications. For example, an I/Q sample

can be represented as a tuple of real numbers or a single complex number,

while a set of I/Q samples can be represented as a matrix or a single set of

numbers represented as a string. It is a common belief that there is no one-

size-fits-all data representation solution for every learning problem and that

36

the right format might depend, among others, on the learning objective, choice

of the loss function, and the learning problem considered [O’Shea et al., 2018].

13.5.3. Choice of Learning Model and Architec-

ture

While there is a direct connection between images and tensors, the same can-

not be concluded for wireless signals. For example, while 3-D tensors have been

proven to effectively model images (i.e., red, green, and blue channels), and

kernels in convolutional layers are demonstrably powerful tools to detect edges

and contours in a given image, it is still unclear if and how these concepts

can be applied to wireless signals. Another major difference is that, while im-

ages can be considered as stationary data, RF signals are inherently stochastic,

non-stationary and time-varying. This peculiar aspect poses significant issues

in determining the right learning strategy in the wireless RF domain. For ex-

ample, while CNN seems to be able to effective at solving problems such as

modulation recognition [West and O’Shea, 2017, Karra et al., 2017, O’Shea

et al., 2018], it is still unclear if this is the case for complex problems such as

RF fingerprinting. Moreover, DL has traditionally been used in static contexts

[Krizhevsky et al., 2012, Hinton et al., 2012], where the model latency is usually

not a concern. Another fundamental issue absent in traditional deep learning is

the need to satisfy strict constraints on resource consumption. Indeed, models

with high number of neurons/layers/parameters will necessarily require addi-

tional hardware and energy consumption, which are clearly scarce resources in

embedded systems. Particular care must be devoted, therefore, when designing

learning architectures to solve learning problems in the RF domain.

37

13.6. Conclusion

This chapter provides a comprehensive account of advancements in physical

layer rendered by the application of ANN. To accomplish this, we first provide

readers with an overview of the most prevalent ANNs that are employed in

the wireless communication networks. Next, we discuss the impact of ANN on

designing physical layer for gathering signal intelligence. Realizing the impor-

tance of extending these techniques to hardware implementation, we discuss

some steps that can be taken in those directions to ensure a rapid transition

of these techniques to commercial hardware. Finally, we discuss some of the

open problems that need to be tackled to further ease the adoption of ANN for

wireless networks. The overarching goal of this chapter is to enable researchers

with the fundamental tool to understand the applications of ANN in the con-

text of signal intelligence in wireless communication and apprise them of the

latest advancements that will consequently motivate new and existing works.

Bibliography

Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,

et al. Tensorflow: A system for large-scale machine learning. In OSDI,

volume 16, pages 265–283, 2016.

Satyam Agarwal and Swades De. eDSA: energy-efficient dynamic spectrum

access protocols for cognitive radio networks. IEEE Transactions on Mobile

Computing, 15(12):3057–3071, 2016.

J. Akeret, C. Chang, A. Lucchi, and A. Refregier. Radio frequency interfer-

38

ence mitigation using deep convolutional neural networks. Astronomy and

Computing, 18:35–39, January 2017. doi: 10.1016/j.ascom.2017.01.002.

Elsayed Elsayed Azzouz and Asoke Kumar Nandi. Automatic Modulation

Recognition of Communication Signals. Kluwer Academic Publishers, Nor-

well, MA, 1996. ISBN 0792397967.

M. Bkassiny, Y. Li, and S. K. Jayaweera. A survey on machine-learning tech-

niques in cognitive radios. IEEE Communications Surveys & Tutorials,

15(3):1136–1159, Third 2013. ISSN 1553-877X. doi: 10.1109/SURV.2012.

100412.00017.

David Broomhead and David Lowe. Radial basis functions, multi-variable

functional interpolation and adaptive networks. ROYAL SIGNALS AND

RADAR ESTABLISHMENT MALVERN (UNITED KINGDOM), RSRE-

MEMO-4148, 03 1988.

Guey-Yun Chang, Szu-Yung Wang, and Yuen-Xin Liu. A jamming-resistant

channel hopping scheme for cognitive radio networks. IEEE Transactions

on Wireless Communications, 16(10):6712–6725, 2017.

Mingzhe Chen, Ursula Challita, Walid Saad, Changchuan Yin, and Mérouane

Debbah. Machine learning for wireless networks with artificial intelligence:

A tutorial on neural networks. CoRR, abs/1710.02913, 2017. URL http:

//arxiv.org/abs/1710.02913.

Tapiwa Moses Chiwewe and Gerhard Petrus Hancke. Fast convergence coop-

erative dynamic spectrum access for cognitive radio networks. IEEE Trans-

actions on Industrial Informatics, 2017.

39

http://arxiv.org/abs/1710.02913
http://arxiv.org/abs/1710.02913

Cisco Systems. Cisco Visual Networking Index: Global Mobile Data Traffic

Forecast Update, 2016-2021 White Paper. http://tinyurl.com/zzo6766, 2017.

D. Czech, A. Mishra, and M. Inggs. A CNN and LSTM-based approach to clas-

sifying transient radio frequency interference. Astronomy and Computing,

25:52–57, October 2018. doi: 10.1016/j.ascom.2018.07.002.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-

genet: A large-scale hierarchical image database. In Computer Vision and

Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–

255. Ieee, 2009.

Li Deng. The mnist database of handwritten digit images for machine learning

research [best of the web]. IEEE Signal Processing Magazine, 29(6):141–142,

2012.

Ericsson Incorporated. Ericsson Interim Mobility Report, February

2018. https://www.ericsson.com/assets/local/mobility-report/documents/

2018/emr-interim-feb-2018.pdf, 2018.

Federal Communications Commission [2016]. Spectrum Crunch. https://www.

fcc.gov/general/spectrum-crunch.

Federated Wireless. Citizens Broadband Radio Service (CBRS) Shared

Spectrum: An Overview. https://www.federatedwireless.com/wp-content/

uploads/2017/09/CBRS-Spectrum-Sharing-Overview.pdf, 2018.

S. Foulke, J. Jagannath, A. L. Drozd, T. Wimalajeewa, P. K. Varshney, and

W. Su. Multisensor Modulation Classification (MMC) Implementation con-

siderations USRP case study. In Proc. of IEEE Conf. on Military Commu-

nications (MILCOM), Baltimore, MD, USA, October 2014.

40

http://tinyurl.com/zzo6766
https://www.ericsson.com/assets/local/mobility-report/documents/2018/emr-interim-feb-2018.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2018/emr-interim-feb-2018.pdf
https://www.fcc.gov/general/spectrum-crunch
https://www.fcc.gov/general/spectrum-crunch
https://www.federatedwireless.com/wp-content/uploads/2017/09/CBRS-Spectrum-Sharing-Overview.pdf
https://www.federatedwireless.com/wp-content/uploads/2017/09/CBRS-Spectrum-Sharing-Overview.pdf

S. Ghodeswar and P. G. Poonacha. An SNR estimation based adaptive hi-

erarchical modulation classification method to recognize M-ary QAM and

M-ary PSK signals. In Proc. of International Conference on Signal Process-

ing, Communication and Networking (ICSCN), pages 1–6, Chennai, India,

March 2015. doi: 10.1109/ICSCN.2015.7219867.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016a. http://www.deeplearningbook.org.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep

learning, volume 1. MIT press Cambridge, 2016b.

Alharbi Hazza, Mobien Shoaib, Saleh AlShebeili, and Alturki Fahd. Automatic

modulation classification of digital modulations in presence of HF noise.

EURASIP Journal on Adv. in Signal Processing, 2012:238, 2012.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. CoRR, abs/1512.03385, 2015. URL http:

//arxiv.org/abs/1512.03385.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N

Sainath, et al. Deep neural networks for acoustic modeling in speech recog-

nition: The shared views of four research groups. IEEE Signal processing

magazine, 29(6):82–97, 2012.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jrgen Schmidhuber. Gra-

dient flow in recurrent nets: the difficulty of learning long-term dependencies,

2001.

41

http://www.deeplearningbook.org
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected con-

volutional networks. CoRR, abs/1608.06993, 2016. URL http://arxiv.org/

abs/1608.06993.

Jen-Feng Huang, Guey-Yun Chang, and Jian-Xun Huang. Anti-jamming ren-

dezvous scheme for cognitive radio networks. IEEE Transactions on Mobile

Computing, 16(3):648–661, 2017.

J. Jagannath, H. M. Saarinen, and A. L. Drozd. Framework for Automatic

Signal Classification Techniques (FACT) for Software Defined Radios. In

Proc. of IEEE Symposium on Computational Intelligence in Security and

Defense Applications (CISDA), Verona, NY, USA, May 2015.

J. Jagannath, D. O’Connor, N. Polosky, B. Sheaffer, L. N. Theagarajan,

S. Foulke, P. K. Varshney, and S. P. Reichhart. Design and Evaluation of Hi-

erarchical Hybrid Automatic Modulation Classifier using Software Defined

Radios. In Proc. of IEEE Annual Computing and Communication Workshop

and Conference (CCWC), Las Vegas, NV, USA, January 2017.

J. Jagannath, S. Furman, T. Melodia, and A. Drozd. Design and experimental

evaluation of a cross-layer deadline-based joint routing and spectrum alloca-

tion algorithm. IEEE Transactions on Mobile Computing, pages 1–1, 2018a.

ISSN 1536-1233. doi: 10.1109/TMC.2018.2866093.

J. Jagannath, N. Polosky, D. OConnor, L. Theagarajan, B. Sheaffer, S. Foulke,

and P. Varshney. Artificial Neural Network based Automatic Modulation

Classifier for Software Defined Radios. In Proc. of IEEE International Con-

ference on Communications (ICC), Kansas City, MO, USA, May 2018b.

C. Jiang, H. Zhang, Y. Ren, Z. Han, K. C. Chen, and L. Hanzo. Machine

42

http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993

learning paradigms for next-generation wireless networks. IEEE Wireless

Communications, 24(2):98–105, April 2017. ISSN 1536-1284. doi: 10.1109/

MWC.2016.1500356WC.

Xiaocong Jin, Jingchao Sun, Rui Zhang, Yanchao Zhang, and Chi Zhang. Spec-

Guard: spectrum misuse detection in dynamic spectrum access systems. to

appear, IEEE Transactions on Mobile Computing, 2018.

L-S. Bouchard K. Youssef. Training artificial neural networks with reduced

computational complexity. URL https://gtp.autm.net/public/project/

34861/.

K. Karra, S. Kuzdeba, and J. Petersen. Modulation recognition using hierar-

chical deep neural networks. In Proc. of IEEE International Symposium on

Dynamic Spectrum Access Networks (DySPAN), pages 1–3, Baltimore, MD,

USA, March 2017. doi: 10.1109/DySPAN.2017.7920746.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. CoRR, abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-

fication with deep convolutional neural networks. In Advances in neural

information processing systems, pages 1097–1105, 2012.

A. Kubankova, J. Prinosil, and D. Kubanek. Recognition of Digital Modula-

tions Based on Mathematical Classifier. In Proc. of the European Conference

of Systems (ECCS), Stevens Point, WI, 2010.

M. Kulin, T. Kazaz, I. Moerman, and E. De Poorter. End-to-end learning from

spectrum data: A deep learning approach for wireless signal identification in

43

https://gtp.autm.net/ public/project/34861/
https://gtp.autm.net/ public/project/34861/
http://arxiv.org/abs/1412.6980

spectrum monitoring applications. IEEE Access, 6:18484–18501, 2018. doi:

10.1109/ACCESS.2018.2818794.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436, 2015.

Yann LeCun et al. Generalization and network design strategies. Connection-

ism in perspective, pages 143–155, 1989.

Lu Lv, Jian Chen, Qiang Ni, Zhiguo Ding, and Hai Jiang. Cognitive non-

orthogonal multiple access with cooperative relaying: A new wireless frontier

for 5g spectrum sharing. IEEE Communications Magazine, 56(4):188–195,

2018.

Q. Mao, F. Hu, and Q. Hao. Deep learning for intelligent wireless networks:

A comprehensive survey. to appear, IEEE Communications Surveys & Tu-

torials, 2018. doi: 10.1109/COMST.2018.2846401.

R. F. Molanes, J. J. Rodrguez-Andina, and J. Faria. Performance characteri-

zation and design guidelines for efficient processor - FPGA communication

in Cyclone V FPSoCs. IEEE Transactions on Industrial Electronics, 65(5):

4368–4377, May 2018. ISSN 0278-0046. doi: 10.1109/TIE.2017.2766581.

T. J. O’Shea, T. Roy, and T. C. Clancy. Over-the-air deep learning based radio

signal classification. IEEE Journal of Selected Topics in Signal Processing, 12

(1):168–179, Feb 2018. ISSN 1932-4553. doi: 10.1109/JSTSP.2018.2797022.

Timothy J. O’Shea and Johnathan Corgan. Convolutional radio modulation

recognition networks. CoRR, abs/1602.04105, 2016. URL http://arxiv.org/

abs/1602.04105.

44

http://arxiv.org/abs/1602.04105
http://arxiv.org/abs/1602.04105

Timothy James O’Shea and Jakob Hoydis. An introduction to deep learning

for the physical layer. IEEE Transactions on Cognitive Communications and

Networking, 3(4):563–575, 2017.

O. Ozdemir, Ruoyu Li, and P.K. Varshney. Hybrid Maximum Likelihood Mod-

ulation Classification Using Multiple Radios. IEEE Communications Letters,

17(10):1889–1892, October 2013.

O. Ozdemir, T. Wimalajeewa, B. Dulek, P. K. Varshney, and W Su. Asyn-

chronous Linear Modulation Classification with Multiple Sensors via Gener-

alized EM Algorithm. IEEE Transactions on Wireless Communications, 14

(11):6389–6400, November 2015.

S. U. Pawar and J. F. Doherty. Modulation recognition in continuous phase

modulation using approximate entropy. IEEE Transactions on Information

Forensics and Security, 6(3):843–852, Sept 2011. ISSN 1556-6013. doi: 10.

1109/TIFS.2011.2159000.

Pete Bennett (EE Times). The Why, Where and What of Low-Power SoC

Design. https://www.eetimes.com/document.asp?doc id=1276973, 2004.

F. Rosenblatt. The Perceptron, a Perceiving and Recognizing Automaton

Project Para. Report: Cornell Aeronautical Laboratory. Cornell Aero-

nautical Laboratory, 1957. URL https://books.google.com/books?id=P

XGPgAACAAJ.

F. Rosenblatt. Principles of neurodynamics: perceptrons and the theory of brain

mechanisms. Report (Cornell Aeronautical Laboratory). Spartan Books,

1962. URL https://books.google.com/books?id=7FhRAAAAMAAJ.

45

https://www.eetimes.com/document.asp?doc_id=1276973
https://books.google.com/books?id=P_XGPgAACAAJ
https://books.google.com/books?id=P_XGPgAACAAJ
https://books.google.com/books?id=7FhRAAAAMAAJ

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning repre-

sentations by back-propagating errors. Nature, 323:533–536, 1986. ¡a

href=”absps/sutherlandbp.pdf”¿Commentary from News and Views section

of Nature¡/a¿.

Ahmed Selim, Francisco Paisana, Jerome A. Arokkiam, Yi Zhang, Linda

Doyle, and Luiz A. DaSilva. Spectrum monitoring for radar bands using

deep convolutional neural networks. CoRR, abs/1705.00462, 2017. URL

http://arxiv.org/abs/1705.00462.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning:

From theory to algorithms. Cambridge university press, 2014.

Huaxia Wang Hathal Alwageed Shengliang Peng, Hanyu Jiang and Yu-Dong

Yao. Modulation classification using convolutional neural network based

deep learning model. WOCC, 2017.

Q. Shi and Y. Karasawa. Automatic modulation identification based on

the probability density function of signal phase. IEEE Transactions on

Communications, 60(4):1033–1044, April 2012. ISSN 0090-6778. doi:

10.1109/TCOMM.2012.021712.100638.

Hossein Shokri-Ghadikolaei, Federico Boccardi, Carlo Fischione, Gabor Fodor,

and Michele Zorzi. Spectrum sharing in mmwave cellular networks via cell

association, coordination, and beamforming. IEEE Journal on Selected Ar-

eas in Communications, 34(11):2902–2917, 2016.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway

networks. CoRR, abs/1505.00387, 2015. URL http://arxiv.org/abs/1505.

00387.

46

http://arxiv.org/abs/1705.00462
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1505.00387

Bülent Üstün, Willem J. Melssen, and Lutgarde M. C. Buydens. Facilitating

the application of support vector regression by using a universal pearson vii

function based kernel. 2005.

Miguel Angel Vázquez, Luis Blanco, and Ana I Pérez-Neira. Hybrid analog–

digital transmit beamforming for spectrum sharing backhaul networks. IEEE

transactions on signal processing, 66(9):2273, 2018.

Tianqi Wang, Chao-Kai Wen, Hanqing Wang, Feifei Gao, Tao Jiang, and Shi

Jin. Deep learning for wireless physical layer: Opportunities and challenges.

China Communications, 14(11):92–111, 2017.

N. E. West and T. O’Shea. Deep architectures for modulation recognition.

In Proc. of IEEE International Symposium on Dynamic Spectrum Access

Networks (DySPAN), pages 1–6, Baltimore, MD, USA, March 2017. doi:

10.1109/DySPAN.2017.7920754.

T. Wimalajeewa, J. Jagannath, P. K. Varshney, A. L. Drozd, and W. Su.

Distributed Asynchronous Modulation Classification Based on Hybrid Max-

imum Likelihood Approach. In Proc. of IEEE Conf. on Military Communi-

cations (MILCOM), Tampa, FL, USA, October 2015.

Felix Winterstein, Samuel Bayliss, and George A Constantinides. High-

level synthesis of dynamic data structures: A case study using vivado hls.

In Proc. of International Conference on Field-Programmable Technology

(FPT), pages 362–365, Kyoto, Japan, 2013.

M. L. D. Wong and A. K. Nandi. Automatic digital modulation recogni-

tion using spectral and statistical features with multi-layer perceptrons.

In Proc. of the Sixth International Symposium on Signal Processing and

47

its Applications (Cat.No.01EX467), volume 2, pages 390–393, 2001. doi:

10.1109/ISSPA.2001.950162.

Xilinx Inc. AXI Reference Guide, UG761 (v13.1) March 7, 2011.

https://www.xilinx.com/support/documentation/ip documentation/

ug761 axi reference guide.pdf, 2011.

J. L. Xu, W. Su, and M. Zhou. Software-defined radio equipped with rapid

modulation recognition. IEEE Transactions on Vehicular Technology, 59(4):

1659–1667, May 2010. ISSN 0018-9545. doi: 10.1109/TVT.2010.2041805.

K. Youssef, N. N. Jarenwattananon, and L. Bouchard. Feature-preserving noise

removal. IEEE Transactions on Medical Imaging, 34(9):1822–1829, Sept

2015. ISSN 0278-0062. doi: 10.1109/TMI.2015.2409265.

K. Youssef, L.-S. Bouchard, K. Z. Haigh, H. Krovi, J. Silovsky, and C. P.

Vander Valk. Machine Learning Approach to RF Transmitter Identification.

ArXiv e-prints, November 2017.

Liyang Zhang, Francesco Restuccia, Tommaso Melodia, and Scott Pudlewski.

Learning to detect and mitigate cross-layer attacks in wireless networks:

Framework and applications. In Proc. of IEEE Conf. on Communications

and Network Security, Las Vegas, NV, USA, October 2017.

Yi Ting Zhou and Rama Chellappa. Computation of optical flow using a neural

network. IEEE 1988 International Conference on Neural Networks, pages

71–78 vol.2, 1988.

48

https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf

	Contributors
	Acronyms
	Neural Networks for Signal Intelligence: Theory and Practice
	Introduction
	Overview of Artificial Neural Network
	Feedforward Neural Networks
	Convolutional Neural Networks

	Neural Networks For Signal Intelligence
	Modulation Classification
	Wireless Interference Classification

	Neural Networks for Spectrum Sensing
	Existing work
	Background on System-on-Chip Computer Architecture
	A Design Framework for Real-time RF Deep Learning

	Open Problems
	Lack of Large-scale Wireless Signal Datasets
	Choice of I/Q Data Representation Format
	Choice of Learning Model and Architecture

	Conclusion
	Bibliography

